Potential of airborne lidar measurements for cirrus cloud studies
نویسندگان
چکیده
Aerosol and water vapour measurements were performed with the lidar system WALES of Deutsches Zentrum für Luftund Raumfahrt (DLR) in October and November 2010 during the first mission with the new German research aircraft G55-HALO. Curtains composed of lidar profiles beneath the aircraft show the vertical and horizontal distribution and variability of water vapour mixing ratio and backscatter ratio above Germany. Two missions on 3 and 4 November 2010 were selected to derive the water vapour mixing ratio inside cirrus clouds from the lidar instrument. A good agreement was found with in situ observations performed on a second research aircraft flying below HALO. ECMWF analysis temperature data are used to derive relative humidity fields with respect to ice (RHi) inside and outside of cirrus clouds from the lidar water vapour observations. The RHi variability is dominated by small-scale fluctuations in the water vapour fields while the temperature variation has a minor impact. The most frequent in-cloud RHi value from lidar observations is 98 %. The RHi variance is smaller inside the cirrus than outside of the cloud. 2-D histograms of relative humidity and backscatter ratio show significant differences for in-cloud and out-of-cloud situations for two different cirrus cloud regimes. Combined with accurate temperature measurements, the lidar observations have a great potential for detailed statistical cirrus cloud and related humidity studies.
منابع مشابه
An Investigation of Cirrus Cloud Properties Using Airborne Lidar
Title of dissertation: AN INVESTIGATION OF CIRRUS CLOUD PROPERTIES USING AIRBORNE LIDAR John Edward Yorks, Doctor of Philosophy, 2014 Dissertation directed by: Russell R. Dickerson Department of Atmospheric and Oceanic Science The impact of cirrus clouds on the Earth’s radiation budget remains a key uncertainty in assessing global radiative balance and climate change. Composed of ice, and locat...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملRetrieval of Cirrus Microphysical Properties with a Suite of Algorithms for Airborne and Spaceborne Lidar, Radar, and Radiometer Data
Algorithms are developed to convert data streams from multiple airborne and spaceborne remote sensors into layer-averaged cirrus bulk microphysical properties. Radiometers such as the Moderate-Resolution Imaging Spectroradiometer (MODIS) observe narrowband spectral radiances, and active remote sensors such as the lidar on the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CA...
متن کاملA new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidar
[1] To improve our understanding of cirrus cloud radiative impact on the current and future climate, improved knowledge of cirrus cloud microphysical properties is needed. However, long-term studies of the problem indicate that accurate cirrus cloud measurements are challenging. This is true for both, remote sensing as well as in situ sampling. This study presents a new method to remotely sense...
متن کاملClassification of particle shapes from lidar depolarization ratio in convective ice clouds compared to in situ observations during CRYSTAL-FACE
[1] A technique to classify ice particles into different shape categories, based on lidar depolarization ratio, is considered. This technique is applied to observations taken during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL-FACE) campaign with the airborne Cloud Physics Lidar. The retrieved relative concentrations of particle shapes a...
متن کامل